
Catalog−Building Tutorial

Table of Contents
1. Purpose...1

2. Before you begin..3
2.1. Install Interchange and the demo catalog..3
2.2. The Interchange operating system user...3
2.3. Important directories...3
2.4. Your catalog URL...4
2.5. Starting or restarting Interchange..4
2.6. Tutorial assumptions...4

3. Building Your Catalog..7
3.1. Create the link program..7
3.2. Create the tutorial catalog directory..7
3.3. Become the Interchange user..7
3.4. Go to the tutorial catalog directory...7
3.5. Create the session directory..8

4. Configuration files..9
4.1. interchange.cfg..9
4.2. catalog.cfg...9

5. The products database table..11
5.1. products/products.txt...11

6. Page templates...13
6.1. top...13
6.2. left...13
6.3. bottom...13
6.4. The Interchange Tag Language..14

7. Creating a welcome page..15
7.1. pages/index.html...15

8. Troubleshooting..17

9. Displaying products..19
9.1. Listing all products...19
9.2. pages/flypage.html..20
9.3. special_pages/missing.html..20

10. The shopping basket...23
10.1. A link for ordering..23
10.2. pages/ord/basket.html...23

11. Order checkout..25
11.1. pages/checkout.html..25
11.2. etc/profiles.order...27
11.3. special_pages/needfield.html..27

Catalog−Building Tutorial

i

Table of Contents
11.4. Credit card processing...28
11.5. etc/report...28
11.6. special_pages/receipt.html..29

12. Enhancing the catalog...31
12.1. Price pictures...31
12.2. Catalog variables...32
12.3. A more interesting page footer...32
12.4. Advanced credit card expiration date selection..33
12.5. Sorting the product list..34
12.6. Adding a search box..35
12.7. The default catalog page...37
12.8. High−traffic changes...37
12.9. High traffic mode..38

13. Ideas for further enhancements...39

A. Catalog directory structure...41

B. Document history...43

Catalog−Building Tutorial

ii

1. Purpose
The purpose of this document is to guide you through constructing a simple Interchange catalog from scratch.
The demo catalog that ships with Interchange is quite complex since it highlights some of the many
capabilities that Interchange offers. As a template for your own catalog, the demo can be an intimidating place
to start if your purpose is to learn.

The simple catalog you create using this tutorial should give you a feel for the basic Interchange system. It
should also be considered a stepping stone to a more complete and functional e−commerce system built with
Interchange. The tutorial relies as much as possible on default settings to accentuate how Interchange works.
It will use as few of Interchange's capabilities as possible, while still building a usable store. The resulting site
will be simple but usable. The value of this tutorial is in the instruction that occurs along the way.

It is recommended that you create the files used in this tutorial yourself. You will learn more by creating the
directory structure and using your favorite text editor to create files in the proper places on your own system
as they are discussed.

1. Purpose 1

Catalog−Building Tutorial

2 1. Purpose

2. Before you begin
This section explains the initial set up tasks that must be completed before you can begin building your simple
e−commerce site.

2.1. Install Interchange and the demo catalog

The easiest way to get Interchange and the demo set up is through an RPM install on the Red Hat Linux or
Linux Mandrake operating systems. You can also get Interchange by unpacking an Interchange tarball or
checking out a copy of the CVS repository and doing a manual installation. These installations can be done
either as a regular user or as root, installing for a special Interchange user.

You must also know what type of installation you ran so you know where to place the various files created.
Before proceeding, verify that Interchange is properly installed. Also, keep in mind which type of installation
you did:

RPM (RPM Package Manager) install•
Manual install as root•
Manual install as regular user•

Note: After installation, makecat should be run to build your catalog. For information on installing
Interchange and building your catalog using makecat, see the Interchange Getting Started Guide. Do not to
continue with this tutorial without a working demo catalog.

Installing the demo catalog set up the Interchange global configuration file interchange.cfg, which
resides in the Interchange software directory. Also, it compiled the link program for your specific server and
placed the executable program in your cgi−bin directory. This is necessary for your catalog to run properly.

2.2. The Interchange operating system user

If Interchange was installed as a regular user, that will be the user Interchange runs as. If Interchange was
installed as root or from an RPM, you need to know the name of the separate Interchange user. The
Interchange daemon will not run as root, and should not run as the web server user (usually 'apache', 'www',
'httpd', or 'nobody'). If Interchange was installed from the RPM, or with the default source installation settings,
the username is interch. If you selected a different user name, you will need to know what it is.

2.3. Important directories

In order to complete this tutorial you will need to know the location of each of the following directories and
have write permissions on them:

Interchange software directory
RPM install: /usr/lib/interchange♦
Manual install as root: /usr/local/interchange♦
Manual install as regular user: /home/username/interchange♦

•

Catalogs directory
RPM install: /var/lib/interchange♦
Manual install as root: /usr/local/interchange/catalogs♦

•

2. Before you begin 3

Manual install as regular user: /home/username/catalogs♦
cgi−bin directory

RPM install or source install as root: /var/www/cgi−bin♦
Manual install as root (locally installed web server): /usr/local/htdocs, /opt/www, ...♦
Manual install as regular user: /home/username/public_html (with .cgi extension)♦

•

Note: The installation of Interchange is very flexible and the file locations on your system may vary,
depending on how your system was set up. It is recommended that you not proceed until you are sure you
have this information and the necessary permissions to write to these directories.

2.4. Your catalog URL

Finally, you need to know the URL to access your store from a web browser. Again, this can vary depending
on how your web server has been set up. But, assuming a common setup of the Apache web server, your URL
should be one of the following:

Root or RPM install: http://localhost/cgi−bin/tutorial/pagename•
Manual install as user:http://localhost/~username/tutorial.cgi/pagename•

If you aren't running your web browser on the server where Interchange is running, you need to substitute
your server's host name (for example: machine.domain.com for localhost) where mentioned.

Note: It is recommended that you use the real machine name instead of localhost. The standard for cookies
specifies that they can only be set when a domain name has at least two dots in it. If you use localhost, you
will lose session information if you leave catalog, since the session ID is passed only as part of the URL.

2.5. Starting or restarting Interchange

When you make changes to the configuration files you need to restart the Interchange server. How this is done
depends on how you installed Interchange:

RPM install as root: /usr/sbin/interchange −r•
Manual install as Interchange user:/usr/local/interchange/bin/interchange −r•
Manual install as root: su interch −c
'/usr/local/interchange/bin/interchange −r'

•

Manual install as regular user:~/interchange/bin/interchange −r•

Find the right command for your system and remember it, since you will need to restart Interchange a few
times during the tutorial.

2.6. Tutorial assumptions

Because it is impossible to cover all scenarios, this tutorial assumes that you installed Interchange on Red Hat
Linux from the RPM packages. This creates the following settings:

Interchange software directory: /usr/lib/interchange•
Catalogs directory: /var/lib/interchange•
cgi−bin directory: /var/www/cgi−bin•

Catalog−Building Tutorial

4 2.4. Your catalog URL

Interchange user: interch•
Demo catalog name: foundation•
Demo catalog URL base: http://localhost/cgi−bin/foundation•
Tutorial catalog name: tutorial•
Tutorial catalog URL base: http://localhost/cgi−bin/tutorial•
Tutorial catalog directory: /var/lib/interchange/tutorial•

If you did not install with these settings, substitute the correct values for your system when these settings are
mentioned in the tutorial.

Catalog−Building Tutorial

2.4. Your catalog URL 5

Catalog−Building Tutorial

6 2.4. Your catalog URL

3. Building Your Catalog
This section describes the pages and directories that need to be established to create a properly functioning
catalog.

3.1. Create the link program

You need to make a copy of the demo link program in your cgi−bin directory and name it tutorial.

The demo link program has the same name as your demo catalog, usually foundation. The link program
links the Interchange daemon with your web server. Make sure that it has the same owner and file permissions
as the one you copied from. The set−UID bit is especially (unless you installed as a regular user). Normally
you will need to be root to have write permissions in the cgi−bin directory.

Type this command as root while in your cgi−bin directory:

 cp −p foundation tutorial

If everything is working correctly, typing ls −l should describe your files roughly like this:

 −rwsr−xr−x 1 interch interch 7708 Dec 16 22:47 foundation
 −rwsr−xr−x 1 interch interch 7708 Dec 16 22:47 tutorial

3.2. Create the tutorial catalog directory

As root, create a subdirectory named tutorial under your catalogs directory (probably
/var/lib/interchange/). This is where all of the catalog−specific files will go. It needs to be readable,
writable, and executable by the Interchange user. This will be referred to as your catalog directory. Type the
following while in the catalogs directory to create the tutorial subdirectory:

 mkdir tutorial
 chown interch.interch tutorial
 chmod 770 tutorial

3.3. Become the Interchange user

You should be able to do everything you need to do as the 'interch' user for the rest of this tutorial. So you can
switch to that user now (su − interch). If you installed Interchange from the RPM, the user interch
probably doesn't have a password. You'll have to set it with a command such as passwd interch while
root.

3.4. Go to the tutorial catalog directory

Change to the catalog directory with the 'cd' command. For the rest of this tutorial, all file locations will be
given relative to the tutorial catalog directory. For example, pages/ord/basket.html would actually be
/var/lib/interchange/tutorial/pages/ord/basket.html or the equivalent on your system.
The only exception is interchange.cfg, which is in the Interchange software directory.

3. Building Your Catalog 7

Note: To improve clarity, we will append a trailing slash to directory names to clearly distinguish them from
file names. (Similar to the output of the ls command with the −F option.)

3.5. Create the session directory

You need to create the session directory where Interchange saves information on each visitor's browsing
session. If you do not have this directory, your catalog will not work. This directory is called session/ and
goes under your catalog directory. Type mkdir session to create this directory.

Catalog−Building Tutorial

8 3.5. Create the session directory

4. Configuration files
Interchange configuration is controlled by a number of directives, which are specified in two files. Global
configuration directives go in interchange.cfg in the Interchange software directory. Catalog−specific
configuration directives go in catalog.cfg in the catalog directory.

A complete directive consists of the directive name followed by whitespace−separated parameters. Any
number of spaces or tabs can be between the directive and its options, but the directive and its options must be
on the same line. The directive is case−insensitive, but it is recommended that you use it consistently for
readability.

You can insert blank lines or comment lines (lines where the first non−blank character is '#') throughout the
configuration files to improve readability. The order the lines appear in is significant, but unimportant for the
simple catalog you are creating.

For the next part, access your text editor (for example, vi, emacs, pico, joe, gedit, or nedit) to start editing
some files.

4.1. interchange.cfg

The first directive we need to use is a global directive that tells Interchange where the new catalog is, called
Catalog. The Catalog directive has the following format:

 Catalog name catalog_base_directory link_url_path

Open interchange.cfg in the Interchange software directory. Go near the top of the file, right below the
other Catalog directives, and add this line:

 Catalog tutorial /var/lib/interchange/tutorial /cgi−bin/tutorial

Save the file.

4.2. catalog.cfg

For the rest of the tutorial, most of the files mentioned do not exist yet. You will create them yourself with
initial text we give.

You need to create a catalog.cfg file for your tutorial store (in the tutorial catalog directory). We'll start
with a very simple products database table with a few fields and a few products.

The Database directive describes a database table to the Interchange system in this format:

 Database name filename format

Interchange has several database options available. We will use the simplest, which is the built−in default
(specifically, some variant of DBM). The default location for filename is in a subdirectory called products
under the catalog directory. Interchange recognizes a number of file formats. We will use a tab−delimited text
file. Enter the following into catalog.cfg:

 Database products products.txt TAB

4. Configuration files 9

This tells Interchange that you have a database table named 'products' that is described in a tab−delimited file
named products.txt. You can describe an unlimited number of arbitrary database tables for the system to
use this way. Interchange keeps a list of default tables called "Product Files," reflecting its e−commerce roots.
You can specify all of the database tables that contain products by using the ProductFiles directive. There is
no default for this, so you will have to specify your products table's name by adding the following line to
catalog.cfg:

 ProductFiles products

There are a few other directives that Interchange expects to see in order to complete the minimum
configuration. They are VendURL, SecureURL, and MailOrderTo. They are, respectively, your catalog's
base URL, its secure URL, and the e−mail address to mail order notices to. Add the following lines to
catalog.cfg to establish these directives:

 VendURL http://localhost/cgi−bin/tutorial
 SecureURL http://localhost/cgi−bin/tutorial
 MailOrderTo your@email.address

The catalog.cfg file should look like this when you save it:

 Database products products.txt TAB
 ProductFiles products
 VendURL http://localhost/cgi−bin/tutorial
 SecureURL http://localhost/cgi−bin/tutorial
 MailOrderTo your@email.address

Catalog−Building Tutorial

10 4. Configuration files

5. The products database table

5.1. products/products.txt

Create the products/ directory in your tutorial catalog directory.

The products/products.txt file will serve two purposes. It will provide Interchange with the layout of
the products database table and it will also provide the data. When Interchange parses the products.txt file, it
will expect the first line to contain the names of the fields for the database table (for example, sku, description,
price). The first field in the list is expected to be a primary key (unique identifier) for that row. In most cases
you are going to use the SKU (stock keeping unit) as the unique identifier for each product.

The product database is handled as a special case since Interchange expects at least the description, price, and
product ID (sku) fields. In other words, the products.txt file must at least contain fields named sku,
price, and description. You can have other fields too, if you wish.

The simple store that we are going to build will sell tests. You can choose another sample product line, but it
is recommended that you keep it simple. Create the file products/products.txt to look like this, with
a single tab separating each field:

 sku description price
 4595 Nice Bio Test 275.45
 2623 Stack of Econ Quizzes 1.24
 0198 Really Hard Physics Test 1589.34
 1299 Ubiquitous diff eq final 37.00

Note: When using tab−delimited files as we are, make sure you have exactly one tab between each field.
Some text editors will use spaces to simulate tabs. Interchange expects actual ASCII tab characters; extra
spaces or other characters will corrupt your data.

You may notice that the columns don't line up in your text editor. This is the nature of tab−delimited files. Do
not try to fix these.

5. The products database table 11

Catalog−Building Tutorial

12 5. The products database table

6. Page templates
Since most sites have certain aspects of the site that remain the same as the content of the pages changes, we
are going to create a template that we can use for all pages. We'll divide the page into four sections:

 | |
 | top |
 | |
 |−−−−−−−−−−−−−−−−−−−−−|
left	main
−−−−−−−−−−−−−−−−−−−−−	
bottom	

The "main" section holds the content that is different for each page. The "top" section is for headers, banners,
menus, and so on. The "left" section can be used as a sidebar or navigation bar, and the "bottom" section can
contain the copyright and contact info. The top, left, and bottom sections will remain constant throughout the
site. Making a change to information in one of these sections will make that change to all pages in your site.

Now type the HTML for each template section in an individual plain text file in the catalog directory, named
'top', 'left', and 'bottom', respectively using the code displayed below. No '.html' suffixes are used on these
because they are not meant to be parsed directly by Interchange as full pages.

6.1. top

 <html>
 <head>
 <title>The Interchange Test Catalog</title>
 </head>
 <body>
 <div align=center>
 <table width="80%" border cellpadding=15>
 <tr><td colspan=2 align=center><h1>The Interchange Test Catalog</h1></td></tr>

6.2. left

 <tr>
 <td align=center>(left)</td>
 <td align=center>

6.3. bottom

 </td>
 </tr>
 <tr><td colspan=2 align=center>(bottom)</td></tr>
 </table>
 </div>
 </body>

6. Page templates 13

 </html>

6.4. The Interchange Tag Language

Now we need a way to pull the template pieces we just created into the proper places to make a complete
page. This is done using ITL, the Interchange Tag Language.

ITL is at the heart of almost all Interchange catalog pages. It's how you use Interchange's functionality. The
ITL tags appear between square brackets like [this]. Options appear after the tag, separated by whitespace,
like this: [tag option1 option2] and this: [tag option1=value1 option2=value2]. They can span multiple lines.
(That can help readability when the tag has many options.) There are many ITL tags, and for this tutorial very
few will be addressed. For a complete listing of the ITL tags, see the Interchange Tag Reference Guide.

Your first tag will be [include], which reads the file mentioned (relative to the catalog directory), parses any
Interchange tags, and puts the result in place of the tag. This is demonstrated on the next page you need to
create.

Catalog−Building Tutorial

14 6.4. The Interchange Tag Language

7. Creating a welcome page

7.1. pages/index.html

Create a directory called pages/ in your tutorial catalog directory.

Type the following text and save it as pages/index.html. This will create a page to test that everything
works so far.

 [include top]
 [include left]
 This is where your content goes.
 [include bottom]

Restart Interchange so your changes take effect. Go to your web browser and load the page. The URL should
be similar to the following: http://localhost/cgi−bin/tutorial/index.html.

Note: Interchange pages in the pages/ or other directories must have the .html suffix on them. You can
drop the suffix in your URL and in other places, such as the [page] tag you'll learn about later, but the file
name on disk must have the suffix.

7. Creating a welcome page 15

Catalog−Building Tutorial

16 7. Creating a welcome page

8. Troubleshooting
Your first Interchange page should have displayed as described in your browser. If it didn't, you need to figure
out what went wrong. Most of the time, overlooked details are the problem. Double−checking your typing is a
good habit to get into.

The following is a troubleshooting checklist to use when you run into problems:

Have you created directories with the proper names in the proper locations? (See Appendix A for a
full directory and file structure of the tutorial catalog.)

1.

Have you misspelled any file names or put them in the wrong directories? Are the files and parent
directories readable by the interch user? Double−check with the ls command.

2.

Did you type letters in the proper case? Remember that both Unix and Interchange are case−sensitive,
and for the most part you may not switch upper− and lower−case letters.

3.

Did you type all punctuation, ITL tags, and HTML tags correctly?4.
Did you use whitespace correctly in the cases where it mattered? Remember to use tabs when tabs are
called for (in lists and database text files).

5.

Did you restart Interchange if you changed anything in interchange.cfg or catalog.cfg, or
if you're in a high−traffic mode?

6.

Check your catalog error log, error.log in your tutorial catalog directory, to see if Interchange
reported any errors.

7.

Check the Interchange server error log, error.log in the Interchange software directory, to see if it
had problems loading the catalog at all.

8.

View the HTML source of any catalog pages that are loading incorrectly to check for a coding error.
The problem may reveal itself when you see what HTML the browser is getting.

9.

8. Troubleshooting 17

Catalog−Building Tutorial

18 8. Troubleshooting

9. Displaying products

9.1. Listing all products

Now that your store is running, you need to display your products on the welcome page. We will loop over all
of the products in our database and produce an entry for each one in a table. Replace the line "This is where
your content goes" in pages/index.html with the following:

 <table cellpadding=5>
 <tr>
 <th>Test #</th>
 <th>Description</th>
 <th>Price</th>
 </tr>

 . . .

 </table>

Now we will use Interchange tags to fill in the rest of the table from the products database you created. The
[loop] [/loop] ITL tag pair tells Interchange to iterate over each item in the parameter list. In this case, the loop
is over the result of an Interchange search. The search parameter does a database search on the provided
parameters. In this case, we're doing a very simple search that returns all of the fields for all of the entries in
the products database. The parameters passed to the search tell Interchange to return all ('ra') on the file ('fi')
products respectively. The following should take the place of the ellipsis in the code you placed in
index.html:

 [loop search="ra=yes/fi=products"]

 . . .

 [/loop]

In the loop we just established, the individual elements of the entry using the [loop−field] tag. The following
code should replace the above ellipsis in the code we placed in pages/index.html:

 <tr>
 <td>[loop−code]</td>
 <td>[loop−field description]</td>
 <td align=right>[loop−field price]</td>
 </tr>

The [loop−code] tag refers to the primary key (unique identifier) for the current row of the database table in
question. In this case, it will produce the same output as the [loop−field sku] tag, because the 'sku' field is the
primary key for products table. In each case the tag is replaced by the appropriate element. When put together,
Interchange generates a page with your products table on it.

Your finished page should look like this:

 [include top]
 [include left]
 <table cellpadding=5>
 <tr>
 <th>Test #</th>

9. Displaying products 19

 <th>Description</th>
 <th>Price</th>
 </tr>
 [loop search="ra=yes/fi=products"]
 <tr>
 <td>[loop−code]</td>
 <td>[loop−field description]</td>
 <td align=right>[loop−field price]</td>
 </tr>
 [/loop]
 </table>
 [include bottom]

Test this page by refreshing the index.html page in your browser.

9.2. pages/flypage.html

The next step is to create an individual page for each item. To do this, you need to create a special generic
page called pages/flypage.html. When a page is requested that does not exist in the pages/ directory,
Interchange will check and see if the requested page has the same name as a product ID from the product
database table (in this case a SKU). If it does, it will show the flypage for that product. If there's no product
with that ID, the special error page special_pages/missing.html (described in the next section) will
be displayed.

For example, if the page 0198.html was requested, Interchange first checks for a page with that name. If
one is not found, it searches the products database table for a product with that ID. Interchange then creates a
product page "on the fly" using pages/flypage.html. When constructing the flypage, the entire product
record for the requested product is available through the [item−field] tag (similar to the [loop−field] tag). To
create a fly page, type the following code and save it as pages/flypage.html.

 [include top]
 [include left]

 <h3>Test #[item−code]</h3>
 <p>[item−field description] . . . [item−field price]</p>

 [include bottom]

Then, to provide links to the product flypages from your home page, modify pages/index.html slightly,
so that:

 <td>[loop−field description]</td>

becomes:

 <td>[loop−field description]</td>

9.3. special_pages/missing.html

Create the special_pages/ directory in your tutorial catalog directory (not in the pages/ directory).

As mentioned, it is a good idea to display an error page when Interchange is asked for an unknown page. To
create a missing page for display, type the following and save it as special_pages/missing.html.

Catalog−Building Tutorial

20 9.2. pages/flypage.html

 [include top]
 [include left]
 <p>We're sorry, the page you requested has not been found.</p>

 <p>Try finding what you need on the [page index]welcome page.</p>
 [include bottom]

The addition of this page ensures that users see your error message instead of a mysterious server error if they
mistype a URL.

Catalog−Building Tutorial

9.2. pages/flypage.html 21

Catalog−Building Tutorial

22 9.2. pages/flypage.html

10. The shopping basket

10.1. A link for ordering

Now that you have your products available, let's add a shopping cart so customers can purchase them. This is
created using the [order] tag. These tags create an HTML link that causes the specified item to be ordered and
transfers the shopper to the basket page. This is a built−in shortcut to the complete order process which uses
an HTML form submission process. The parameter for the [order] tag is the product ID. To add these tags to
the catalog, make the following change to pages/index.html:

 <tr>
 <td>[loop−code]</td>
 <td>[loop−field description]</td>
 <td align=right>[loop−field price]</td>
+ <td>[order [loop−code]]Order Now</td>
 </tr>
 [/loop]

Note: The line you need to add is marked by a '+'. However, do not include the '+' when adding this line. The
surrounding lines are shown to give you context. This style is called a "context diff" and is used often in this
tutorial.

10.2. pages/ord/basket.html

Create the directory pages/ord/ in the tutorial catalog directory. In other words, ord/ should be inside
the pages/ directory.

For the [order] tag, Interchange expects a default page called pages/ord/basket.html. This page
displays the contents of the shopping basket and contains other shopping basket functionality.

The Foundation store has a full−featured shopping basket available for use, but this tutorial teaches you to
build your own simple one. The shopping basket items can be accessed using a set of tags that have an [item]
prefix. Put the following code in the new file pages/ord/basket.html. The section that follows
explains the tags used.

 [include top]
 [include left]

 <h2>This is your shopping cart!</h2>

 <table cellpadding=5>

 <tr>
 <th>Qty.</th>
 <th>Description</th>
 <th>Cost</th>
 <th>Subtotal</th>
 </tr>

 [item−list]
 <tr>
 <td align=right>[item−quantity]</td>
 <td>[item−field description]</td>

10. The shopping basket 23

 <td align=right>[item−price]</td>
 <td align=right>[item−subtotal]</td>
 </tr>
 [/item−list]

 <tr><td colspan=4></td></tr>

 <tr>
 <td colspan=3 align=right>Total:</td>
 <td align=right>[subtotal]</td>
 </tr>

 </table>

 <hr>

 <p>
 [page checkout]Purchase now

 [page index]Return to shopping
 </p>

 [include bottom]

The basket items can be accessed one at a time by using the [item−list] tag. So we will create a table by
iterating through the basket items. The text within the [item−list] [/item−list] tags is created for each item in
the list.

[item−quantity] shows the quantity of the item ordered. If the same item is ordered multiple times, the
quantity increases.

•

[item−field description] shows the description from the product database table. Any field that is not
special to Interchange can be accessed from the shopping cart this way.

•

[item−price] shows the per−item price that is defined in the product database table.•
[item−subtotal] shows the total cost of this order line. This is normally the price multiplied by the
quantity, but it can also take into account other considerations, such as various kinds of price
discounts.

•

[subtotal] shows the calculated shopping basket subtotal.•
[page index] creates the starting HTML for a link to the catalog welcome page.•

You also need to put a link in the index page so that shoppers can go to their shopping cart without ordering
something. Modify the end of pages/index.html by adding the following lines.

 </table>
+ <hr>
+ <p align=center>[page order]View shopping cart</p>
 [include bottom]

Refresh the page and test the shopping basket in your browser.

Catalog−Building Tutorial

24 10. The shopping basket

11. Order checkout

11.1. pages/checkout.html

The site can now be completed by adding the ability to check out with the shopping cart and finalize the order.
To do this the customer needs to provide a shipping address (which, for the sake of this tutorial, we will
assume is the same as the billing address), and payment information. We will process the order by verifying
the customer's payment information and sending an email to the merchant (ourselves) detailing the order.

First you need to create a checkout page. The checkout page consists of a form that receives order information
from the customer and performs a simple credit card number check. In this tutorial we will use a built−in test
that only checks to see if a given credit card number could be valid. If the information is acceptable the
customer will move to the next phase of the order process. If it is not, an error page will be displayed.

To create a checkout page, type the following code and save it as pages/checkout.html. The section
that follows explains the code.

 [include top]
 [include left]
 <h1>Checkout Page</h1>

 <form method=post action="[process]">
 <input type=hidden name=mv_todo value=submit>
 <input type=hidden name=mv_order_profile value=order_profile>
 <input type=hidden name=mv_cyber_mode value=minivend_test>

 <table cellpadding=3>

 <tr>
 <td align=right>First name:</td>
 <td><input type=text name=fname value="[value fname]"></td>
 </tr>

 <tr>
 <td align=right>Last name:</td>
 <td><input type=text name=lname value="[value lname]"></td>
 </tr>

 <tr>
 <td align=right rowspan=2>Address:</td>
 <td><input type=text name=address1 value="[value address1]"></td>
 </tr>

 <tr>
 <td><input type=text name=address2 value="[value address2]"></td>
 </tr>

 <tr>
 <td align=right>City:</td>
 <td><input type=text name=city value="[value city]"></td>
 </tr>

 <tr>
 <td align=right>State:</td>
 <td><input type=text name=state value="[value state]"></td>
 </tr>

11. Order checkout 25

 <tr>
 <td align=right>Postal code:</td>
 <td><input type=text name=zip value="[value zip]"></td>
 </tr>

 <tr>
 <td align=right>Country:</td>
 <td><input type=text name=country value="[value country]"></td>
 </tr>

 </table>

 <p>
 Note: We assume that your billing address is the same as your shipping address.
 </p>

 <table cellpadding=3>

 <tr>
 <td align=right>Credit card number:</td>
 <td><input type=text name=mv_credit_card_number value="" size=20></td>
 </tr>

 <tr>
 <td align=right>Credit card expiration date:</td>
 <td>
 Month (number from 1−12):
 <input type=text name=mv_credit_card_exp_month value="" size=2 maxlength=2>

 Year (last two digits only):
 <input type=text name=mv_credit_card_exp_year value="" size=2 maxlength=2>
 </td>
 </tr>

 </table>

 <p>
 <input type=submit name=submit value="Finalize!">
 <input type=reset name=reset value="Reset">
 </p>

 </form>

 <p>[page index]Return to shopping instead</p>
 [include bottom]

The HTML form begins with a method of 'post' (which sends the form data as its own stream, as opposed to
the 'get' method which encodes the data as part of the URL). The [process] tag creates a special URL for form
processing. Interchange has a built−in form processor that is configured by submitting certain fields in the
form. The Finalize button will invoke this form processor and link the user to the
special_pages/receipt.html page, which is described later.

You are submitting some hidden form values that will tell Interchange how to process this form. The first
value, mv_todo was set as submit. This causes the form to be submitted for validation. The second value,
mv_order_profile was set as order_profile. This determines the validation process for the form. It is explained
further in the next section.

The last value, mv_cyber_mode, was set to be minivend_test. The mv_cyber_mode value determines what
method will be used to charge a credit card. The value of minivend_test uses the internal test method, which

Catalog−Building Tutorial

26 11. Order checkout

calculates a simple checksum against the card to determine if it is a valid number.

When preparing an order for processing, Interchange looks for certain named fields in the form values for
name, address, and credit card information. We are using all expected field names in this form so that no
translation needs to take place.

View the checkout page in your browser. The "Finalize!" link has not been enabled, but the page should
display properly.

11.2. etc/profiles.order

Create the etc/ directory in the tutorial catalog directory now.

You need to set up verification for the order form by defining an order profile for the form. An order profile
determines what fields are necessary for the form to be accepted. Create an order profile verification page by
typing the following and saving it as etc/profiles.order. The section that follows explains the code
used.

 __NAME__ order_profile

 fname=required
 lname=required
 address1=required
 city=required
 state=required
 zip=required

 &fatal=yes
 &final=yes

 __END__

A single file can contain multiple profile definitions. First the profile is named using the __NAME__ pragma.
(This is unrelated to the __VARIABLE__ syntax seen elsewhere in Interchange.) Then in the profile there is a
list of the form fields that are required. The &fatal setting indicates that validation will fail if any of the
requirements are not met. &final indicates that this form will complete the ordering process. This setting is
helpful if you have a multi−page ordering process and you want to validate each page individually. The
__END__ pragma signals the end of this profile, after which you can begin another one.

In order to activate your order profile, add the following OrderProfile directive to the end of catalog.cfg:

 OrderProfile etc/profiles.order

Watch for white space in front of the __NAME__ pragma, it can cause your profile to be ignored. Rember to
restart Interchange for any changes to take effect.

11.3. special_pages/needfield.html

If the submitted form lacks a required field, Interchange will display an error page. The default location is
special_pages/needfield.html. To create this page, type the following text and save it as
special_pages/needfield.html.

Catalog−Building Tutorial

11.2. etc/profiles.order 27

 [include top]
 [include left]
 <p>The following information was not given:</p>

 <p>[error all=1 show_var=1 show_error=1 joiner='
']</p>

 <p>Please go back to the [page checkout]checkout page
 and fill out the form properly.</p>

 [include bottom]

The [error] tag is the most important tag on this page. The all parameter tells the tag to iterate through all of
the errors reported from the failed verification, and the show_var parameter indicates that the failed variable
name should be displayed. For example, if the first name was left empty, fname would be shown. The
show_error parameter displays the actual error for the variable. The joiner parameter inserts an HTML

tag between each error message, so each error is displayed on its own line. In more complex configurations,
the [error] tag can be even more expressive.

11.4. Credit card processing

This tutorial uses a very simple order process. To accomplish this, one more directive needs to be added to the
file etc/profiles.order:

 &fatal=yes
 &final=yes
+ &credit_card=standard keep

 __END__

This issues two instructions to the credit card system.

The first option, standard, uses the standard built−in encryption algorithm to encrypt the credit card number
and erases the unencrypted copy from memory. We are using the standard option not to encrypt the number
but to run the checksum verification on the number to verify that it is a potentially correct number. We will
not be checking with a real payment processor to see if it actually is a valid card number. For testing purposes,
you can use the card number 4111 1111 1111 1111, which will pass the checksum test.

The second option, keep, keeps the credit card number from getting removed from memory. We want to keep
the number in memory so that it is available when it is mailed as part of the order.

If the credit card number passes and all of the required fields are present, the customer will be sent to the final
page. Interchange then sends an e−mail to the store owner (you).

11.5. etc/report

When the customer's involvement in the order is complete, Interchange composes an email and sends it to the
recipient defined in the MailOrderTo directive in catalog.cfg. The default location for the template for
this email report is etc/report. Interchange tags can be used to fill in the body of the message.

The report should include at least the customer's name, address, and the items they ordered. The following is a
simple report template; save it as etc/report.

 Name: [value fname] [value lname]

Catalog−Building Tutorial

28 11.4. Credit card processing

 Address: [value address1][if value address2]
 [value address2][/if]
 City, State, etc.: [value city], [value state] [value zip] [value country]

 Credit Card #: [cgi mv_credit_card_number]
 Expiration Date: [cgi mv_credit_card_exp_month]/[cgi mv_credit_card_exp_year]

 ************ ORDER ************
 [item−list]
 [item−quantity] x [item−description] ([item−code]), [item−price] ea.
 [/item−list]
 Subtotal: [subtotal]
 Total: [total−cost]

This file is in plain text format where, unlike HTML, white space is relevant. It is fairly straightforward,
except that the [if] tag was added to only include the optional second address line if the customer filled it in.

One of the special properties of the mv_credit_card_number field is that Interchange specifically precludes
the credit card number from being saved. This makes it unavailable to you in the [value] tag. The [cgi] tag is
used to circumvent this important security measure in order to get the value submitted from the last form.

WARNING! Obviously it is a bad idea to send a real credit card number over an insecure channel like email.
In a real configuration, you would encrypt the number securely before emailing or storing it.

11.6. special_pages/receipt.html

Once the report has been run, Interchange will finish the order process on the customer side by displaying a
success screen containing a receipt. The default location for this page is
special_pages/receipt.html. To create a receipt page, type the following code and save it as
special_pages/receipt.html.

 [include top]
 [include left]
 <p>Thank you for ordering stuff from us.
Have a nice day!</p>
 <p>[page index]Return to our welcome page</p>
 [include bottom]

Once the order is processed, the customer's shopping cart is emptied.

At this point you have a more−or−less functional store. Congratulations.

Catalog−Building Tutorial

11.6. special_pages/receipt.html 29

Catalog−Building Tutorial

30 11.6. special_pages/receipt.html

12. Enhancing the catalog
Now that you have a working catalog, you can go back and add improvements and test them incrementally.
This section walks you through several and then suggests more enhancements you can attempt on your own.

12.1. Price pictures

You may have noticed that the product prices aren't formatted as prices usually are. The way to correct this is
with an Interchange feature called price pictures.

There are several properties to price pictures: the currency symbol, the thousands separator, the decimal point,
the number of digits to show behind the decimal, and so on. Most Unix systems have U.S. currency and the
English language as the default locale, which is called en_US. The only thing you need to do on such a
system is specify the currency symbol, which, in this case, is the dollar sign. To do this, add the following line
to your catalog.cfg file:

 Locale en_US currency_symbol $

Restart Interchange and view your catalog. You will notice little has changed on the welcome page or the
flypages, but in the shopping cart all your prices should be formatted as U.S. dollars ("1347.3" has become
"$1,347.30"). This is because Interchange automatically formats shopping cart prices as currency. To turn off
this feature, you would have to change the [item−price] tag to [item−price noformat] in
pages/ord/basket.html.

But that's probably not what you want to do. You're probably more interested in formatting your other prices
as currency. To do that, simply use the [currency] [/currency] tag pair for all price values. Make the following
change to pages/index.html:

 [loop search="ra=yes/fi=products"]
 <tr>
 <td>[loop−code]</td>
 <td>[loop−field description]</td>
− <td align=right>[loop−field price]</td>
+ <td align=right>[currency][loop−field price][/currency]</td>
 </tr>
 [/loop]

Note: The line that begins with '−' should be deleted. Do not type the '−'. The next line, that starts with '+',
replaces it.

A similar change to the [item−field price] tag in the pages/flypage.html page will fix that
currency display. View the page in your browser. All your prices should be formatted for U.S. currency.

If your prices are not being formatted correctly, your default system locale may be set up differently or your
en_US locale settings may be wrong. There are a few other catalog.cfg directives you can use to correct
the situation:

 Locale en_US p_cs_precedes 1

Makes the currency symbol precede the currency value. A '0' setting makes the symbol come after the
currency value.

12. Enhancing the catalog 31

 Locale en_US mon_thousands_sep ,

Sets your thousands separator to a comma. It can be set to any value.

 Locale en_US mon_decimal_point .

Sets your decimal separator to a comma. Many countries use a comma instead of a period to separate the
integer from the decimal part.

Note: Consult the Interchange documentation and your operating system manual for more information on
locale settings.

12.2. Catalog variables

Interchange provides a very useful feature that has not been discussed yet called catalog variables. It provides
a way for you to set a variable to a certain value in the catalog.cfg file and use it anywhere in your
catalog pages. The Variable directive allows an Interchange catalog variable to be created with the name
coming from the first parameter and the value from the rest of the line, like this:

 Variable SOMENAME whatever value you want

To access that variable in your pages, type the token __SOMENAME__. Notice that there are two underscore
characters before the variable name and two after it, and that in place of the word SOMENAME you would
put the actual name of the variable. The first thing Interchange does on a page is to replace the token with the
variable's value. The value can also include Interchange tags to be parsed.

12.3. A more interesting page footer

You can put a contact email address at the bottom of each page in case your customers want to contact you.
You could just add it to the footer, but by putting it into a variable you can use it in contact pages as well. This
allows you to easily change the variable information and have that change reflected in all instances of that
variable. The following is an example of how to set a catalog variable in catalog.cfg:

 Variable CONTACT_EMAIL someone@your.domain

Now make the following change to your template file bottom:

 </td>
 </tr>
− <tr><td colspan=2>(bottom)</td></tr>
+ <tr><td colspan=2>Contact us
+ if you have any questions.</td></tr>
 </table>
 </div>
 </body>
 </html>

Be sure to restart Interchange before reloading the page in your browser, since you made a change to
catalog.cfg.

Let's add another variable to your catalog. This variable demonstrates how an Interchange tag can be included
in the variable. This Interchange tag returns the current date in a standard format. Add the following to

Catalog−Building Tutorial

32 12.2. Catalog variables

catalog.cfg:

 Variable DISPLAYDATE [time]%A, %B %d, %Y[/time]

Note: See the Interchange Tag Reference Guide for an explanation of the [time] tag.

Now add the following to the left template piece:

 <tr>
− <td align=center>(left)</td>
+ <td align=center>__DISPLAYDATE__</td>
 <td align=center>

Restart Interchange and view the page.

12.4. Advanced credit card expiration date selection

To reduce the possibility of human error at checkout time, most online stores use a pull−down option menu to
list the months and the years for the credit card expiration date, instead of having the user to type the numbers
by hand. It also lets you avoid explaining whether the user should enter a 2− or 4−digit year.

Make the following change to your pages/checkout.html page. The section that follows explains the
code. Read the explanation section below before typing the code to be sure you know where tabs should be
used instead of spaces and where to watch out for `backticks`.

 <tr>
 <td align=right>Credit card expiration date:</td>
 <td>
− Month (number from 1−12):
− <input type=text name=mv_credit_card_exp_month value="" size=2 maxlength=2>
−

− Year (last two digits only):
− <input type=text name=mv_credit_card_exp_year value="" size=2 maxlength=2>
+
+ Month:
+ <select name=mv_credit_card_exp_month>
+ [loop
+ lr=1
+ option=mv_credit_card_exp_month
+ list="
+ 1 01 − January
+ 2 02 − February
+ 3 03 − March
+ 4 04 − April
+ 5 05 − May
+ 6 06 − June
+ 7 07 − July
+ 8 08 − August
+ 9 09 − September
+ 10 10 − October
+ 11 11 − November
+ 12 12 − December"]
+ <option value="[loop−code]">[loop−pos 1]
+ [/loop]
+ </select>
+
+ Year:

Catalog−Building Tutorial

12.4. Advanced credit card expiration date selection 33

+ <select name=mv_credit_card_exp_year>
+ [comment]
+ This should always return the current year as the first, then
+ seven more years.
+ [/comment]
+ [loop option=mv_credit_card_exp_year lr=1 list=`
+ my $year = $Tag−>time('', { format => '%Y' }, '%Y');
+ my $out = '';
+ for ($year .. $year + 7) {
+ /\d\d(\d\d)/;
+ $last_two = $1;
+ $out .= "$last_two\t$_\n";
+ }
+ return $out;
+ `]
+ <option value="[loop−code]">[loop−pos 1]
+ [/loop]
+ </select>
+
 </td>
 </tr>

 </table>

In the first set of <select> </select> tags a list is generated of the months to choose from. This is accomplished
by using a [loop] tag. In this case we are looping over an explicit list. The list is provided in the list parameter.
Use caution when typing this, as it is sensitive to formatting (which may not be reflected in this document).
Make sure that the numbers are the first characters on each new line and that the elements are separated by a
single tab. Since the columns in this list are not named, the first element can be accessed using [loop−code] or
[loop−pos 0] with subsequent elements being accessed by [loop−pos N] where N is the number of the element
you want. Notice that the elements are zero−indexed. Each time through this loop Interchange generates a
select <option> with a number as the value and the name of the month as the text for the select menu.

For the next set of <select> </select> tags embedded Perl is used to generate the list which is iterated over.
Perl code can be embedded in Interchange pages in order to extend the abilities of the system. Make sure you
typed backticks (grave accents) after "list=" and before the closing bracket and not apostrophes. This code
generates an entry for seven years in addition to the current year. It is not necessary at this point for you to
understand this Perl code.

12.5. Sorting the product list

The products listed on your welcome page are shown in the same order that you entered them into
products/products.txt. As you add more products, you will want this list to show up in a predictable
order. To do this, you need to change the search parameters in index.html, which were originally:

 [loop search="
 ra=yes
 fi=products
 "]

You will recall that 'ra' stands for 'return all' and 'fi' stands for file. Let's add the search parameter 'tf', which
specifies the sort field. You can specify the field either by name or by number (starting with 0), with names
and order as given in the first line of products/products.txt). Make the following change in
index.html:

Catalog−Building Tutorial

34 12.5. Sorting the product list

 [loop search="
 ra=yes
 fi=products
 tf=price
 "]

Refresh your browser. The default ordering is done on a character−by−character basis, but we were looking to
do a numeric sort. For this you need to set 'to', the sort order, to 'n', for numeric:

 [loop search="
 ra=yes
 fi=products
 tf=price
 to=n
 "]

Refresh your browser. Now try reversing the sort order by adding 'r' to the 'to' setting:

 [loop search="
 ra=yes
 fi=products
 tf=2
 to=nr
 "]

You'll notice that it worked equally well to specify the sort field by number instead of name. You could also
do a reverse alphabetical sort by description:

 [loop search="
 ra=yes
 fi=products
 tf=1
 to=r
 "]

Now let's try narrowing the search down a bit. Instead of returning all, we'll give 'se', the search parameter,
and and use 'su', which allows substring matches. To search only for products that have the word "test" in one
of their fields, and sort the results by description, type:

 [loop search="
 se=test
 su=yes
 fi=products
 tf=description
 "]

Which seems like something that would be better done in a search box for your store visitors.

Before moving on, change this search back to the simple list, sorted by description:

 [loop search="ra=yes/fi=products/tf=description"]

12.6. Adding a search box

Your customers might appreciate the ability to search for a test by SKU or part of the test description. To do
this, you need to add a search box to the left portion of the page layout. Make the following change to the file

Catalog−Building Tutorial

12.6. Adding a search box 35

left:

 <tr>
− <td align=center>__DISPLAYDATE__</td>
+ <td align=center>
+ <form action="[area search]" method=post>
+ Search:

+ [set testname]
+ su=yes
+ fi=product
+ sf=sk
+ sf=descriptio
+ [/set]
+ <input type=hidden name=mv_profile value=testname>
+ <input type=text name=mv_searchspec size=15 value="">
+ </form>
+ <hr>
+ __DISPLAYDATE__
+ </td>
 <td align=center>

This is a simple HTML form with a single input box for text. The action goes to a special Interchange
processor called 'search' that will perform the search and pass the results to a page called
pages/results.html (that has not been created yet).

The [set testname] ... [/set] tags set an Interchange 'value' variable that, in this case, will be used as a
predefined search profile. We specify all the search parameters except the one the user will enter,
'mv_searchspec' (the long name for 'se'). We then tell Interchange we want to use this search profile in a
hidden form tag named 'mv_profile'.

The search box will now appear on all catalog pages, but you still need to create the search results page. To
create the search results page, type the following code and save it as pages/results.html.

 [include top]
 [include left]
 <h3>Search Results</h3>
 [search−region]
 [on−match]
 <table cellpadding=5>
 <tr>
 <th>Test #</th>
 <th>Description</th>
 <th>Price</th>
 </tr>
 [/on−match]
 [search−list]
 <tr>
 <td>[item−code]</td>
 <td>[item−field description]</td>
 <td align=right>[item−field price]</td>
 <td>[order [item−code]]order now</td>
 </tr>
 [/search−list]
 [on−match]
 </table>
 [/on−match]
 [no−match]
 <p>Sorry, no matches were found for '[cgi mv_searchspec]'.</p>
 [/no−match]

Catalog−Building Tutorial

36 12.6. Adding a search box

 [/search−region]
 <hr>
 <p align=center>[page index]Return to welcome page</p>
 <p align=center>[page order]View shopping cart</p>
 [include bottom]

The search results will be contained in the [search−region] [/search−region] tags. The text in the [on−match]
[/on−match] container will be displayed only if matches were found for the search. The text in the [no−match]
[/no−match] container will be displayed only if no matches were found. The [search−list] [/search−list]
container functions just like [loop] [/loop], iterating over its contents for each item in the search results list.

12.7. The default catalog page

As you know, a standard Interchange catalog page URL looks like this:

 http://localhost/cgi−bin/tutorial/index.html

But what happens if you leave off the page name, as people often do when typing URLs in by hand? Type:

 http://localhost/cgi−bin/tutorial

and you get a server error message. We can change this by adding the following directive to catalog.cfg:

 SpecialPage catalog index

Restart Interchange and try the above URL again.

Note: If you want to make the welcome page something other than pages/index.html, modify the
'index' part of the directive appropriately.

12.8. High−traffic changes

Through this tutorial you have created catalog pages that use the [include] tag to include template pieces in the
pages. This has worked well, but there are a few drawbacks. First, if you want to rename any of the template
piece files or move them out of the main catalog directory and into their own subdirectory, you would have to
update the [include] tag on every page. To avoid this, you can create catalog variables set to the [include] tags.
Add these lines to your catalog.cfg file:

 Variable TOP [include top]
 Variable LEFT [include left]
 Variable BOTTOM [include bottom]

Now change every instance of [include top] to __TOP__, doing the same for each [include] tag. At this point,
you might not want to do a search−and−replace on all the .html files you just created, but keep this capability
in mind for the next catalog you work on.

If you made all of the replacements and then renamed and moved your top file, you would only have to make
a single change for each region in catalog.cfg to get your pages up to date:

 Variable TOP [include templates/main−top]

Catalog−Building Tutorial

12.7. The default catalog page 37

And so on, depending on your naming scheme.

12.9. High traffic mode

Every time a catalog page is viewed, each file in an [include] tag must be loaded from disk. In a test situation,
this takes no noticeable amount of time. But on a busy Interchange server, this can slow your system.

You can switch to a high−traffic mode that doesn't require each template piece to be read from disk every time
the page is loaded. Instead, all of the pieces are read into variables once when Interchange is started and they
remain in memory until Interchange is restarted. On very busy Interchange catalogs, this can increase your
speed noticeably. The only drawback is that you need to restart the Interchange daemon when you make
changes to the template pieces in order to have the changes take effect. You can set up high−traffic templates
by changing the Variable directives in catalog.cfg as follows:

 Variable TOP <top
 Variable LEFT <left
 Variable BOTTOM <bottom

Catalog−Building Tutorial

38 12.9. High traffic mode

13. Ideas for further enhancements
You can expand your skill with Interchange by adding more functionality to your test catalog. Here are some
simple ideas to get you started:

Send the customer a receipt by email•
Allow customer to specify item quantities•
Generate a unique order number for each order•
Store each order in a database•
Interface with GnuPG or PGP to encrypt credit card numbers in email reports•
Organize your products into categories and group lists by category•

13. Ideas for further enhancements 39

Catalog−Building Tutorial

40 13. Ideas for further enhancements

A. Catalog directory structure
This diagram shows the directory and file structure used for the 'tutorial' catalog you built. The base will be a
directory with the name of your catalog:

 tutorial/
 |
 |−−−−bottom
 |−−−−catalog.cfg
 |−−−−error.log *
 |−−−−etc/
 |−−−−profiles.order
 |−−−−report
 |−−−−left
 |−−−−pages/
 |−−−−checkout.html
 |−−−−flypage.html
 |−−−−index.html
 |−−−−ord/
 |−−−−basket.html
 |−−−−results.html
 |−−−−products/
 |−−−−products.gdbm *
 |−−−−products.txt
 |−−−−session/
 |−−−−(many subdirectories and files) *
 |−−−−special_pages/
 |−−−−missing.html
 |−−−−needfield.html
 |−−−−receipt.html
 |−−−−tmp/ *
 |−−−−top

* denotes files that are automatically created by Interchange at run time. The name of products.gdbm may
vary on your system depending on your Perl setup and default system DBM libraries.

A. Catalog directory structure 41

Catalog−Building Tutorial

42 A. Catalog directory structure

B. Document history
October 2000. Conceived and written by Sonny Cook.

December 2000. Edited and expanded by Jon Jensen.

January 2001. Proofread and clarified by Alison Smith and David Adams.

12 January 2001. First public release.

12 April 2002. Remove mention of obsolete Red Hat Linux 6−specific RPMs.

Copyright 2002−2004 Interchange Development Group. Copyright 2001−2002 Red Hat, Inc. Freely
redistributable under terms of the GNU General Public License.

B. Document history 43

	Table of Contents
	1. Purpose
	2. Before you begin
	2.1. Install Interchange and the demo catalog
	2.2. The Interchange operating system user
	2.3. Important directories
	2.4. Your catalog URL
	2.5. Starting or restarting Interchange
	2.6. Tutorial assumptions

	3. Building Your Catalog
	3.1. Create the link program
	3.2. Create the tutorial catalog directory
	3.3. Become the Interchange user
	3.4. Go to the tutorial catalog directory
	3.5. Create the session directory

	4. Configuration files
	4.1. interchange.cfg
	4.2. catalog.cfg

	5. The products database table
	5.1. products/products.txt

	6. Page templates
	6.1. top
	6.2. left
	6.3. bottom
	6.4. The Interchange Tag Language

	7. Creating a welcome page
	7.1. pages/index.html

	8. Troubleshooting
	9. Displaying products
	9.1. Listing all products
	9.2. pages/flypage.html
	9.3. special_pages/missing.html

	10. The shopping basket
	10.1. A link for ordering
	10.2. pages/ord/basket.html

	11. Order checkout
	11.1. pages/checkout.html
	11.2. etc/profiles.order
	11.3. special_pages/needfield.html
	11.4. Credit card processing
	11.5. etc/report
	11.6. special_pages/receipt.html

	12. Enhancing the catalog
	12.1. Price pictures
	12.2. Catalog variables
	12.3. A more interesting page footer
	12.4. Advanced credit card expiration date selection
	12.5. Sorting the product list
	12.6. Adding a search box
	12.7. The default catalog page
	12.8. High-traffic changes
	12.9. High traffic mode

	13. Ideas for further enhancements
	A. Catalog directory structure
	B. Document history

